Vector Fields in Space

- Useful in describing:
 - Flow of a fluid
 - Force fields (electromagnetic fields, gravitational fields, etc.)
- In two variables: $\vec{F}(x, y) = \langle P(x, y), Q(x, y) \rangle$
- In three variables: $\vec{F}(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$
- **Gradient** vector field: If $f(x_1, x_2, ..., x_n)$, then $\nabla f = \langle f_{x_1}, f_{x_2}, ..., f_{x_n} \rangle$ is the gradient vector field of $f(x_1, x_2, ..., x_n)$.
 - For a function of three variables f(x, y, z), $\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$
- Conservative vector field: A vector field \vec{F} is conservative if there exists a potential function f such that $\nabla f = \vec{F}$.
 - Most prominent example: gravity
 - $\circ \quad \nabla \times \vec{F} = \vec{0} \text{ (assuming continuous second order partials of } f)$
- **Divergence**: $\nabla \cdot \vec{F}$
 - For a vector field of three variables $\vec{F}(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$,

$$\nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

- Measures the amount of stuff flowing out of a region
- **Curl**: $\nabla \times \vec{F}$
 - Only for a vector field in three-space: $\vec{F}(x, y, z) = \langle P, Q, R \rangle$

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left\langle \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\rangle$$

- Measures the amount of rotation in a vector field.
- Use right hand rule to determine direction of curl.
- If f(x, y, z) has continuous second order partials, then $\nabla \times (\nabla f) = \vec{0}$.
- $\circ \quad \nabla \cdot (\nabla \times \vec{F}) = 0 \text{ (assuming continuous second order partials)}$
- **Laplacian**: $\nabla^2 f = \nabla \cdot \nabla f$
 - For a function of three variables f(x, y, z), $\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y} + \frac{\partial^2 f}{\partial^2 z}$
 - Measures the "curvature" of a multivariable function, or how much a point is different in its neighborhood (i.e. how "sharp" a point is on the function).